Publications

Browse our publications

Filter Publications
Sort By

Assessing vitamin D safety following fortification and supplementation intake scenarios using the EFSA Comprehensive Database: the ODIN approach

Download the case study >>>

Download now

Vin K, Connolly A, McCaffrey T, McKevitt A, O’Mahony C, Prieto M, Tennant D, Hearty A, Volatier JL.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(12):2050-80. doi: 10.1080/19440049.2013.851417. Epub 2013 Dec 4.
04/12/2013

Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project’.

The aim of this study was to assess the dietary exposure of 13 priority additives in four European countries (France, Italy, the UK and Ireland) using the Flavourings, Additives and Contact Materials Exposure Task (FACET) software. The studied additives were benzoates (E210-213), nitrites (E249-250) and sulphites (E220-228), butylated hydroxytoluene (E321), polysorbates (E432-436), sucroses esters and sucroglycerides (E473-474), polyglycerol esters of fatty acids (E475), stearoyl-lactylates (E481-482), sorbitan esters (E493-494 and E491-495), phosphates (E338-343/E450-452), aspartame (E951) and acesulfame (E950). A conservative approach (based on individual consumption data combined with maximum permitted levels (Tier 2)) was compared with more refined estimates (using a fitted distribution of concentrations based on data provided by the food industry (Tier 3)). These calculations demonstrated that the estimated intake is below the acceptable daily intake (ADI) for nine of the studied additives. However, there was a potential theoretical exceedance of the ADI observed for four additives at Tier 3 for high consumers (97.5th percentile) among children: E220-228 in the UK and Ireland, E432-436 and E481-482 in Ireland, Italy and the UK, and E493-494 in all countries. The mean intake of E493-494 could potentially exceed the ADI for one age group of children (aged 1-4 years) in the UK. For adults, high consumers only in all countries had a potential intake higher than the ADI for E493-494 at Tier 3 (an additive mainly found in bakery wares). All other additives examined had an intake below the ADI. Further refined exposure assessments may be warranted to provide a more in-depth investigation for those additives that exceeded the ADIs in this paper. This refinement may be undertaken by the introduction of additive occurrence data, which take into account the actual presence of these additives in the different food groups.

Download the case study >>>

Download now

O’Mahony Cian, Vilone Giulia
EFSA Supporting Publications – Volume10, Issue4 April 2013 415E
19/04/2013

Compiled European Food Consumption Database

Food consumption data is a key element of EFSA’s risk assessment activities, forming the basis of dietary exposure assessment at the European level. In 2011, EFSA released the Comprehensive European Food Consumption Database, gathering detailed consumption data from 34 national food consumption surveys representing 66,492 individuals from 22 EU Member States. Due to different survey methodologies used, national survey data cannot be combined to generate average European estimates of dietary exposure. Although the EU menu project, which aims to collect harmonised food consumption data at EU level, will address this limitation of the Comprehensive database, data from this project will not be available until 2018. The present methodological study was executed to assess how the compatibility or existing consumption data as well as the representativeness of food dietary exposure and risk estimates at the European level could be improved through the development of a “Compiled European Food Consumption Database To create Such a dat abase, the usual intake distributions of 589 food items representing the total diet were estimated for 36 clusters, each one composed of subjects belonging to the same age class (children, adolescents or adults). gender and having a similar diet. An adapted form of the NCI (National Cancer Institute) method was used for this, with a number of important modifications. Season, body weight and whether or not the food was consumed at the weekend were used to predict the probability of consumption. Additionally, the gamma distribution was found to be more suitable for modelling the distribution of food amounts n the different food groups instead f the normal distribution. These distributions were combined with food correlation matrices according to the Iman and Conover method in order to simulate 28 days of consumption for 40,000 simulated individuals. The simulated data were validated by comparing the consumption statistics (e.g. mean, median and certain percentiles) of the simulated individuals to the same statistics estimated from the observed individuals of the Comprehensive Database. The same comparison was done at food group level for each cluster. The opportunities and limitations of using the simulated database for exposure assessments are described.

Download the case study >>>

Download now

Kettler Susanne & Marc Kennedy, Cronan McNamara, Regina Oberdörfer, CianO’Mahony, Jürgen Schnabel, Benjamin Smith, Corinne Sprong, Roland Faludi, DavidTennant
Food and Chemical Toxicology – Volume 82, August 2015, Pages 79-95
15/04/2015

Assessing and reporting uncertainties in dietary exposure analysis: Mapping of uncertainties in a tiered approach

Uncertainty analysis is an important component of dietary exposure assessments in order to understand correctly the strength and limits of its results. Often, standard screening procedures are applied in a first step which results in conservative estimates. If through those screening procedures a potential exceedance of health-based guidance values is indicated, within the tiered approach more refined models are applied. However, the sources and types of uncertainties in deterministic and probabilistic models can vary or differ.

A key objective of this work has been the mapping of different sources and types of uncertainties to better understand how to best use uncertainty analysis to generate more realistic comprehension of dietary exposure. In dietary exposure assessments, uncertainties can be introduced by knowledge gaps about the exposure scenario, parameter and the model itself. With this mapping, general and model-independent uncertainties have been identified and described, as well as those which can be introduced and influenced by the specific model during the tiered approach.

This analysis identifies that there are general uncertainties common to point estimates (screening or deterministic methods) and probabilistic exposure assessment methods. To provide further clarity, general sources of uncertainty affecting many dietary exposure assessments should be separated from model-specific uncertainties.

Download the case study >>>

Download now

Oldring PK, Castle L, O’Mahony C, Dixon J.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(3):466-89. doi: 10.1080/19440049.2013.860240. Epub 2014 Jan 20
20/01/2014

Estimates of dietary exposure to bisphenol A (BPA) from light metal packaging using food consumption and packaging usage data: a refined deterministic approach and a fully probabilistic (FACET) approach.

Estimates of dietary exposure to bisphenol A (BPA) from light metal packaging using food consumption and packaging usage data: a refined deterministic approach and a fully probabilistic (FACET) approach.

The FACET tool is a probabilistic model to estimate exposure to chemicals in foodstuffs, originating from flavours, additives and food contact materials. This paper demonstrates the use of the FACET tool to estimate exposure to BPA (bisphenol A) from light metal packaging. For exposure to migrants from food packaging, FACET uses industry-supplied data on the occurrence of substances in the packaging, their concentrations and construction of the packaging, which were combined with data from a market research organisation and food consumption data supplied by national database managers. To illustrate the principles, UK packaging data were used together with consumption data from the UK National Diet and Nutrition Survey (NDNS) dietary survey for 19-64 year olds for a refined deterministic verification. The UK data were chosen mainly because the consumption surveys are detailed, data for UK packaging at a detailed level were available and, arguably, the UK population is composed of high consumers of packaged foodstuffs. Exposures were run for each food category that could give rise to BPA from light metal packaging. Consumer loyalty to a particular type of packaging, commonly referred to as packaging loyalty, was set. The BPA extraction levels used for the 15 types of coating chemistries that could release BPA were in the range of 0.00005-0.012 mg dm(-2). The estimates of exposure to BPA using FACET for the total diet were 0.0098 (mean) and 0.0466 (97.5th percentile) mg/person/day, corresponding to 0.00013 (mean) and 0.00059 (97.5th percentile) mg kg(-1) body weight day(-1) for consumers of foods packed in light metal packaging. This is well below the current EFSA (and other recognised bodies) TDI of 0.05 mg kg(-1) body weight day(-1). These probabilistic estimates were compared with estimates using a refined deterministic approach drawing on the same input data. The results from FACET for the mean, 95th and 97.5th percentile exposures to BPA lay between the lowest and the highest estimates from the refined deterministic calculations. Since this should be the case, for a fully probabilistic compared with a deterministic approach, it is concluded that the FACET tool has been verified in this example. A recent EFSA draft opinion on exposure to BPA from different sources showed that canned foods were a major contributor and compared results from various models, including those from FACET. The results from FACET were overall conservative.

Download the case study >>>

Download now

Download the case study >>>

Download now

EFSA, EFSA. (2007) Opinion of the Scientific Panel on Plant protection products and their Residues on acute dietary intake assessment of pesticide residues in fruit and vegetables.

Acute dietary intake is one of the factors considered by Member States, the European Commission and international authorities when setting Maximum Residue Leve is (MRL S) for pesticides. The MRL is the maximum concentration of a pesticide residue (expressed as mg/kg that is legally permitted in or on a food or agricultural commodity or animal feedstuff. The measure of acute dietary exposure that is used in MRL-setting is the International Estimate of Short Term Intake (IESTI). The IESTI is calculated using one of 4 standard equations, de pending on the type of commodity involved. An MRL above the limit of detection is set for a Commodity only it is ESI does not exceed the Acute Reference Dose (ARTD) or the pesticide concerned. The re are discussions at international level about whether to change the way that IESTI equations are calculated. Therefore the European Commission asked the EFSA Scientific Panel on Plant protection products and their Residues (PPR Fane) for an opinion on how conservative the ESTI equation is, With respect to the percentage or the total European population protected from intakes above the ARTD, and how much this would be altered by changes to the way the IESTTIs calculated. However, the Panel is aware that risk managers are also interested in the special case of people who consume a commodity containing residues at the MRL. Therefore the Panel undertook two types of assessment: “total population assessments”, estimating the level of protection for the total population based on the levels of pesticides observed in monitoring programs, and “MRL-level assessments” for the special case of people who consume one commodity containing residues at the MRL and other commodities at monitoring levels. The Panel estimated acute dietary intakes by probabilistic mode ling This used dat a on food consumption and body we ight from national surveys, and took account of unit-to-unit variability of residues using variability factors. The probabilistic estimates of intakes were higher than measured intakes from a duplicate diet study, suggesting the Paneľ’s results are conservative .e. overestimating intakes and underestimating levels of protection. However, this comparison was possible for only 6 pesticides in one country and one age group, and extrapolation to others countries and age groups is uncertain. It was not possible to conduct probabilistic modelling for the entire population of the Eu, or for all pesticides. The Panel conducte  total population assessments for a number of scenarios representing different combinations of 13 pesticides, 8 countries and a range of age groups from babies to seniors. For practical reasons, the MRL-level assessments were base d on a reduce d range or scenarios, representing only two countries (Germany and The Netherlands) and 11 pesticides. For the total population, the Paneľ’s estimates suggested that the level of protection (LoP) provided by the IESTI equation as currently used in the EU (including variability factors of 5 & 7) varies quite widely between different countries, age groups and pesticides. For some pesticide/country/age group scenarios the estimated LoP was between 99 and 99.9%, i.e.

Download the case study >>>

Download now

Comiskey, Api, Barrett, Ellis, McNamara, O’Mahony, Robison, Rose, Safford, Smith, Tozer
Regul Toxicol Pharmacol. 2017 Aug;88:144-156. doi: 10.1016/j.yrtph.2017.05.017. Epub 2017 May 27.
27/05/2017

Integrating habits and practices data for soaps, cosmetics and air care products into an existing aggregate exposure model.

In order to accurately assess aggregate exposure to a fragrance material in consumers, data are needed on consumer habits and practices, as well as the concentration of the fragrance material in those products. The present study describes the development of Phase 2 Creme RIFM model by expanding the previously developed Phase 1 model to include an additional six product types. Using subject-matching algorithms, the subjects in the Phase 1 Creme RIFM database were paired with subjects in the SUPERB and BodyCare surveys based on age and gender. Consumption of the additional products was simulated to create a seven day diary allowing full data integration in a consistent format. The inhalation route was also included for air care and other products where a fraction of product used is inhaled, derived from the RIFM 2-box model. The expansion of the Phase 1 Creme RIFM model has resulted in a more extensive and refined model, which covers a broader range of product categories and now, includes all relevant routes of exposure. An evaluation of the performance of the model has been carried out in an accompanying publication to this one.

Download the case study >>>

Download now

Safford B & A.M.Api, C.Barratt, D.Comiskey, G.Ellis, C.McNamara, C.O’Mahony, S.Robison, J.Rose, B.Smith, S.Tozeri
Regulatory Toxicology and Pharmacology Volume 86, June 2017, Pages 148-156
28/02/2017

Application of the expanded Creme RIFM consumer exposure model to fragrance ingredients in cosmetic, personal care and air care products

As part of a joint project between the Research Institute for Fragrance Materials (RIFM) and Creme Global, a Monte Carlo model (here named the Creme RIFM model) has been developed to estimate consumer exposure to ingredients in personal care products. Details of the model produced in Phase 1 of the project have already been published. Further data on habits and practises have been collected which enable the model to estimate consumer exposure from dermal, oral and inhalation routes for 25 product types. . In addition, more accurate concentration data have been obtained which allow levels of fragrance ingredients in these product types to be modelled. Described is the use of this expanded model to estimate aggregate systemic exposure for eight fragrance ingredients. Results are shown for simulated systemic exposure (expressed as μg/kg bw/day) for each fragrance ingredient in each product type, along with simulated aggregate exposure. Highest fragrance exposure generally occurred from use of body lotions, body sprays and hydroalcoholic products. For the fragrances investigated, aggregate exposure calculated using this model was 11.5–25 fold lower than that calculated using deterministic methodology. The Creme RIFM model offers a very comprehensive and powerful tool for estimating aggregate exposure to fragrance ingredients.

Download the case study >>>

Download now

Hall B, Steiling W, Safford B, Coroama M, Tozer S, Firmani C, McNamara C, Gibney M.
Food Chem Toxicol. 2011 Feb;49(2):408-22. doi: 10.1016/j.fct.2010.11.016. Epub 2010 Nov 18.
18/11/2010

European consumer exposure to cosmetic products, a framework for conducting population exposure assessments Part 2.

Access to reliable exposure data is essential for the evaluation of the toxicological safety of ingredients in cosmetic products. This study complements the data set obtained previously (Part 1) and published in 2007 by the European cosmetic industry acting within COLIPA. It provides, in distribution form, exposure data on daily quantities of five cosmetic product types: hair styling, hand cream, liquid foundation, mouthwash and shower gel. In total 80,000 households and 14,413 individual consumers in five European countries provided information using their own products. The raw data were analysed using Monte Carlo simulation and a European Statistical Population Model of exposure was constructed. A significant finding was an inverse correlation between the frequency of product use and the quantity used per application recorded for mouthwash and shower gel. The combined results of Part 1 (7 product types) and Part 2 (5 products) reported here, bring up to date and largely confirm the current exposure parameters concerning some 95% of the estimated daily exposure to cosmetics use in the EU. The design of this study, with its relation to demographic and individual diversity, could serve as a model for studies of populations’ exposure to other consumer products.

Download the case study >>>

Download now

McNamara C, Rohan D, Golden D, Gibney M, Hall B, Tozer S, Safford B, Coroama M, Leneveu-Duchemin MC, Steiling W.
Food Chem Toxicol. 2007 Nov;45(11):2086-96. Epub 2007 Jul 7.
07/07/2007

Probabilistic modelling of European consumer exposure to cosmetic products.

In this study, we describe the statistical analysis of the usage profile of the European population to seven cosmetic products. The aim of the study was to construct a reliable model of exposure of the European population from use of the selected products: body lotion, shampoo, deodorant spray, deodorant non-spray, facial moisturiser, lipstick and toothpaste. The first step in this process was to gather reliable data on consumer usage patterns of the products. These data were sourced from a combination of market information databases and a controlled product use study by the trade association Colipa. The market information study contained a large number of subjects, in total 44,100 households and 18,057 habitual users (males and females) of the studied products, in five European countries. The data sets were then combined to generate a realistic distribution of frequency of use of each product, combined with distribution of the amount of product used at each occasion using the CREMe software. A Monte Carlo method was used to combine the data sets. This resulted in a new model of European exposure to cosmetic products being constructed.

Download the case study >>>

Download now

Hall B, Tozer S, Safford B, Coroama M, Steiling W, Leneveu-Duchemin MC, McNamara C, Gibney M.
Food Chem Toxicol. 2007 Nov;45(11):2097-108. Epub 2007 Jun 16.
16/06/2007

European consumer exposure to cosmetic products, a framework for conducting population exposure assessments.

Access to reliable exposure data is essential to evaluate the toxicological safety of ingredients in cosmetic products. This study was carried out by European cosmetic manufacturers acting within the trade association Colipa, with the aim to construct a probabilistic European population model of exposure. The study updates, in distribution form, the current exposure data on daily quantities of six cosmetic products. Data were collected using a combination of market information databases and a controlled product use study. In total 44,100 households and 18,057 individual consumers in five European countries provided data using their own products. All product use occasions were recorded, including those outside of home. The raw data were analysed using Monte Carlo simulation and a European Statistical Population Model of exposure was constructed. A significant finding was an inverse correlation between frequency of product use and quantity used per application for body lotion, facial moisturiser, toothpaste and shampoo. Thus it is not appropriate to calculate daily exposure to these products by multiplying the maximum frequency value by the maximum quantity per event value. The results largely confirm the exposure parameters currently used by the cosmetic industry. Design of this study could serve as a model for future assessments of population exposure to chemicals in products other than cosmetics.

Download the case study >>>

Download now

Tozer S, Kelly S, O’Mahony C, Daly EJ, Nash JF.
Food Chem Toxicol. 2015 Sep;83:103-10. doi: 10.1016/j.fct.2015.06.005. Epub 2015 Jun 16
16/06/2015

Aggregate exposure modelling of zinc pyrithione in rinse-off personal cleansing products using a person-orientated approach with market share refinement.

Realistic estimates of chemical aggregate exposure are needed to ensure consumer safety. As exposure estimates are a critical part of the equation used to calculate acceptable “safe levels” and conduct quantitative risk assessments, methods are needed to produce realistic exposure estimations. To this end, a probabilistic aggregate exposure model was developed to estimate consumer exposure from several rinse off personal cleansing products containing the anti-dandruff preservative zinc pyrithione. The model incorporates large habits and practices surveys, containing data on frequency of use, amount applied, co-use along with market share, and combines these data at the level of the individual based on subject demographics to better estimate exposure. The daily-applied exposure (i.e., amount applied to the skin) was 3.79 mg/kg/day for the 95th percentile consumer. The estimated internal dose for the 95th percentile exposure ranged from 0.01-1.29 μg/kg/day after accounting for retention following rinsing and dermal penetration of ZnPt. This probabilistic aggregate exposure model can be used in the human safety assessment of ingredients in multiple rinse-off technologies (e.g., shampoo, bar soap, body wash, and liquid hand soap). In addition, this model may be used in other situations where refined exposure assessment is required to support a chemical risk assessment.

Download the case study >>>

Download now

Ross John; Driver, Jeffrey; Lunchick, Curt; O’Mahony, Cian
Outlooks on Pest Management, Volume 26, Number 1, February 2015, pp. 33-37(5)
01/02/2015

Models for estimating human exposure to pesticides, Outlooks on Pest Management

Any quantitative understanding of human risk from exposure to pesticides requires knowledge of both hazard (the intrinsic ability of a pesticide to cause harm) and exposure (absorbed dose), i.e., risk is directly proportional to the product of hazard and exposure. Thus, regardless of potential high hazard, risk may be insignificant if exposure is very low, and exposure-driven risk assessment is increasingly being recognized as being the best path forward for the protection of human health. In fact, regulatory agencies did not start doing quantitative risk assessments for pesticides using endpoints other than lethality until the 1970s in part because the analytical tools to sensitively measure exposure were lacking. Quantifying exposure to pesticides required analytical methods such as gas chromatography and liquid chromatography that weren?t commercially available until the mid-1960s to early 1970s, respectively. With the advent of quadrapole mass spectroscopy in the early 1970s the ability to quantify sub milligram per kilogram bodyweight exposures to a wide variety of pesticides with confidence became commonplace. Analytical capability has continued to improve, and it is now possible to measure exposures in the nanogram and sometimes pictogram per kilogram range. As our quantitative knowledge of human exposure matured, it was desirable to extrapolate the knowledge from one chemical that had been measured to others that had not. Indeed, by the early 1980s it became evident that handler exposure to conventional pesticides was generic and not chemical specific. Part of the driving factor to do this modeling was that definitive exposure measurements for one chemical under one set of conditions was costly (>?100,000) and time consuming (months), and the combinations and permutations of exposure scenarios and pesticides are staggering. Models allow us to estimate the exposure to a new active substance or rank exposure of one pesticide to others used in similar conditions. The objective of this paper is to present a brief overview of the range of human exposure models that are available, and the route or pathway of exposure for which they estimate dose with the hope that it provides an appreciation of the basic approaches, chronology and effort expended in developing them.

Download the case study >>>

Download now

O’Sullivan AJ, S Pigat, C O’Mahony, MJ Gibney, AI McKevitt
Food Additives & Contaminants: Part A 34 (11), 1863-1874
23/08/2017

Longitudinal modelling of the exposure of young UK patients with PKU to acesulfame K and sucralose

Artificial sweeteners are used in protein substitutes intended for the dietary management of inborn errors of metabolism (phenylketonuria, PKU) to improve the variety of medical foods available to patients and ensure dietary adherence to the prescribed course of dietary management. These patients can be exposed to artificial sweeteners from the combination of free and prescribed foods. Young children have a higher risk of exceeding acceptable daily intakes (ADI) for additives than adults, due to higher food intakes per kg body weight. Young patients with PKU aged 1–3 years can be exposed to higher levels of artificial sweeteners from these dual sources than normal healthy children and are at a higher risk of exceeding the ADI. Standard intake assessment methods are not adequate to assess the additive exposure of young patients with PKU. The aim of this study was to estimate the combination effect on the intake of artificial sweeteners and the impact of the introduction of new provisions for an artificial sweetener (sucralose, E955) on exposure of PKU patients using a validated probabilistic model. Food consumption data were derived from the food consumption survey data of healthy young children in the United Kingdom from the National Diet and Nutrition Survey (NDNS, 1992–2012). Specially formulated protein substitutes as foods for special medical purposes (FSMPs) were included in the exposure model to replace restricted foods. Inclusion of these protein substitutes is based on recommendations to ensure adequate protein intake in these patients. Exposure assessment results indicated the availability of sucralose for use in FSMPs for PKU leads to changes in intakes in young patients. These data further support the viability of probabilistic modelling as a means to estimate food additive exposure in patients consuming medical nutrition products.

Download the case study >>>

Download now

Micronutrient exposure modelling: To build a refined safety assessment for micronutrients

Download the case study >>>

Download now

Pigat Sandrine, Rosalyn O’Connor
The FASEB Journal 29 (1_supplement), 905.3
01/04/2015

Probabilistic Bioactive Food Compound Intakes in the European BACCHUS Project

Objective

The EU funded BACCHUS project aims to develop tools and resources to study relationships between bioactive food compound intakes and cardiovascular health in humans. To handle variation and uncertainty of bioactive levels in foods a probabilistic model of bioactive intakes was used to estimate distributions of population intakes.

Methods

To assess food bioactive intake distributions in Europe, national food intake surveys were used from the UK, the Netherlands, Norway and Spain. To account for variability and uncertainty of bioactive concentrations within foods, the foods consumed were linked to discrete bioactive concentration distributions using published data on plant based foods as captured in the eBasis database. Daily bioactive population intakes were calculated using a probabilistic intake model in the Creme Nutrition® software.

Results

Data shows apple (g/day) and catechin (mg/day) intakes from apples and apple products in the four countries.

Daily intakes (mg/day) Ireland UK Spain Norway
Mean (95%ile) Mean (95%ile) Mean (95%ile) Mean (95%ile)
Apple + Apple Products 33 (135) 32 (129) 42 (183) 78 (300)
Catechin 1±0.1 (5.8±0.4) 1±0.1 (5.2±0.3) 1.3±0.06 (8±0.4) 2.5±0.14 (14.8±1.0)
Epicatechin 13±0.6 (56.5±3.5) 12.9±0.65 (54.5±3.6) 16.7±0.48 (73.1±2.4) 29.8±1.06 (119.6±6.0)
Epigallocatechin 22.4±0.9 (92.2±4.1) 21.7±1.0 (88.2±4.9) 28.9±0.8 (125.2±6.8) 53.1±1.8 (204.9±7.7)
Epicatechin-gallate 0.1±0.0 (0.3±0.0) 0.1±0.0 (0.2±0.0) 0.1±0.0 (0.3±0.0) 0.1±0.0 (0.6±0.0)
Conclusion

This study enables the link between bioactive concentration levels in foods and representative population intakes, using probabilistic intake models to better estimate full intake distributions in a population.

Download the case study >>>

Download now

Pigat, S., O’Mahony, C.
The FASEB Journal 29 (1_supplement), 384.8
18/01/2019

A Framework for the Predictive Modelling of Public Health Nutrition Strategies

Research Questions

Within public health nutrition, it is of crucial importance to monitor adequate as well as safe nutritional intakes within a population. Food policy initiatives around dietary intakes include voluntary industry reformulation, portion size reductions, food fortification and consumer behavioral changes. Predictive intake models can be used to assess the likely impact of such policies before their implementation.

Methods

Creme Nutrition®, a web based dietary intake software which combines national food consumption and food composition data, includes various models to assess the impact of different strategies, including probabilistic food substitution, portion size modification, and food reformulation. A case study was used to demonstrate the model for sodium reduction using the National Health and Nutrition Examination Survey (NHANES) 2008-2010. In this model, sodium content in bread was reduced by 20%, soups were replaced by low sodium soups containing no more than 120mg/100g and pretzel consumption was substituted by one apple at a replacement probability of 70% to model partial consumer adherence probabilistically.

Results

After modelling sodium intakes in the US population, mean total daily sodium intakes in adults decrease from 3671.9±34.1mg/day to 3512.9±33mg/day. For the high sodium consumers (97.5%ile) total daily sodium intakes are reduced from 7337.85±185.6mg/day to 7090.7±170.8mg/day.

Conclusions

The proposed approach demonstrates the viability of assessing and combining different scenarios to predict the impact of a change on a population’s or a sub-population’s diet via public health initiatives.

Download the case study >>>

Download now

Tozer S, & Cian O’Mahony, Jen Hannah, John O’Brien, Seamus Kelly, Kirstin Kosemund-Meynen, Camilla Alexander-White
Food and Chemical Toxicology, Volume 131, September 2019, 110549
31/05/2019

Aggregate exposures to existing and novel fragrances in consumer products

Download the case study >>>

Download now

Tozer, S & Cian O’Mahony, Jen Hannah, John O’Brien, Seamus Kelly, Kirstin Kosemund-Meynen, Camilla Alexander-White
Food and Chemical Toxicology, Volume 131, September 2019, 110549
31/05/2019

Aggregate exposure modelling of vitamin A from cosmetic products, diet and food supplements

Realism is important in estimating consumer exposure to a substance, especially when accounting for exposure from multiple sources. Humans are exposed to vitamin A from food, dietary supplements and cosmetics products. A probabilistic aggregate exposure model was developed for estimating exposure distributions to vitamin A (as retinol equivalents) in pre-/post-menopausal, and menopausal women in European and US populations. Data from large dietary surveys were used, together with realistic and extreme case scenarios of cosmetics product use (including occurrence data for vitamin A presence in 17 cosmetic products). Results of absorbed exposure estimates were expressed as μg/kg bw/day by incorporating dermal and oral bioavailability data. The mean and 95th percentile (P95) aggregate exposures were below the EU Tolerable Upper Intake Limit (3000 μg/day; 45 μg/kg/day internal exposure dose (IED)), providing positive assurances of safety. The major source of vitamin A exposure is the diet, with cosmetics providing only a small fraction of total exposure (2–5% at P95). In addition to providing a realistic assessment of total vitamin A exposure, this work provides a case study on how to approach future complex aggregate exposure questions.

Download the case study >>>

Download now

O’Mahony C. et al on behalf of the ECETOC Task Force on guidance for effective use of human exposure data in risk assessment of chemicals
ECETOC Technical Report no.126Affiliation: European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), November 2016
01/11/2016

ECETOC Technical Report no.126: Guidance for effective use of human exposure data in risk assessment of chemicals

This report details much of the current state-of-the-art of consumer exposure assessment data and models that can be used in chemical risk assessment, with a particular focus upon aggregate exposure assessment. Aggregate exposure considers all sources of exposure to a single chemical (e.g. hair care products, cosmetics, detergents, foods, environmental media, etc.) via all routes (oral, dermal, and inhalation). The report focuses on consumer products (not including the assessment of occupational exposure), considering the following product domains: cosmetics and personal care products, household products, food and other consumer products (such as surface coatings, adhesives, sealants, disinfectants, automotive care products, toys etc.). Exposure assessment is, by necessity, an iterative process. If, in any tier, negligible or acceptable risk cannot be demonstrated, the assessment moves to a higher tier. The risk assessment is finished if (in any tier of the approach) it has been demonstrated that the risk for the population under consideration is negligible or acceptable, or if in the highest tier the risk is not acceptable and further refinements are not possible. This approach was proposed in the WHO/IPCS framework for risk assessment of combined exposure to multiple chemicals (Meek et al, 2011). The report is divided into four sections. Section One gives background on the tiered approach to exposure assessment, including aggregate exposure assessment in the consumer product domains. Section Two provides an overview of the current exposure landscape, detailing the main data sources, models and tools that are available for chemical risk assessment in the food, cosmetics, household, and consumer products domains. Conclusions and recommendations on current opportunities for the development and provision of new tools and data are also presented based on the outcome of this landscaping exercise. This section is accompanied by a detailed spreadsheet referencing all identified data sources and tools identified for chemical exposure assessment. Section Three presents examples of case studies of aggregate exposure to the chemicals triclosan and phenoxyethanol (PhE), outlining how current models and data can be best used for higher-tier exposure assessments. In addition, there is a literature review of the broader domain of aggregate exposure assessment, detailing other examples and approaches that exist for aggregate exposure assessment. Section Four contains discussion and conclusions on areas of opportunity for exposure science over the next two to five years. The key conclusions of this report are summarised as follows: • Exposure assessments should involve an iterative process, and should be conducted using a tiered strategy, where the lowest tier (0) involves a semi-quantitative assessment of the all sources, pathways and routes contributing to aggregate exposure to a substance, the mid-tier (1) tends to be a deterministic estimate with conservative assumptions, the higher tier (2) is a more realistic estimation of population exposure with increased use of measured data using probabilistic methods, and at the highest tier (3) exposure is modelled with a person-orientated approach using raw data sets. • Many tools and databases exist to support consumer exposure assessment, as demonstrated in the landscaping effort. Users can select the data and tools that best fit their specific situation and level of assessment. • Most consumer exposures tools are designed to evaluate single substance, single use assessments. • Higher tier exposure assessments require more realistic and representative data to the situation being assessed and additional understanding of data correlations. • Subject oriented aggregate tools (PACEM, Creme Care & Cosmetics) are available that allow aggregate exposure assessment within some consumer product domains. For example, in cosmetics and personal care products, the availability of robust tools and data sets (habits and practices data with product co-use, and the use of presence probabilities) allow refined estimates of aggregate exposure. • A major challenge in estimating aggregate exposure in many product categories is obtaining representative information on exposure factors (Habits and Practices Data, Co-use Data, Chemical Concentration Data and Chemical Occurrence Data), as well as potential correlations between these factors. For some domains, such as household care products, the available data are limited. • Guidance should be developed to indicate when higher tier aggregate assessments might be a priority. Considerations include relative contributions of different sources, level of conservatism in a screening single source assessment (for example, the case study indicates a higher tier aggregate assessment may produce a lower exposure estimate than the maximum screening exposure predicted for a single uses), and total exposure levels from representative biomonitoring studies. • Model verification with real-life data (e.g. biomonitoring) on a representative range of chemicals would assist to promote use/acceptance of exposure model predictions. Wider engagement of industry, the public and regulators into the generation, harmonisation and management of input data related to consumer exposure will foster the advances in aggregate exposure modelling, especially in domains where currently little data are available.

Download the case study >>>

Download now

Comiskey Damien & Cian O’Mahony, E.J. Daly, Cronan McNamara
Toxicology Letters, Volume 229, Supplement, 10 September 2014, Page S111
10/09/2014

Combining databases to estimate population exposure to cosmetics and personal care products

Download the case study >>>

Download now

Hall Barbara, Sarah Tozer, Bob Safford, Manuela Coroama, Winfried Steiling, Marie-Cristine Leneveu-Duchemin, Cronan McNamara, Michael Gibney
Toxicology Letters, Volume 172, Supplement, 7 October 2007, Page S12
05/09/2007

Exposure to cosmetic products in Europe

Download the case study >>>

Download now

Tozer Sarah, J F Nash, and E.J. Daly
International Society for Environmental Epidemiology (ISEE) Annual Meeting, Abstract Number:4967, September 2013
01/09/2013

Probabilistic Aggregate Exposure Modelling for a Broad Spectrum Antimicrobial in Personal Cleansing Products

Background:

Realistic estimates of chemical aggregate exposure are needed to ensure consumer safety and satisfy the requirements of regulators. In most cases, aggregate exposure is estimated simply by adding deterministic exposures from all product types containing the chemical. However, this summation will result in an unrealistically-conservative estimate since individuals vary in their patterns of product use, and it is very unlikely that consumers use high levels of all products at the same time. As aggregate exposure estimates could be used to calculate acceptable “safe levels” and conduct risk assessments for chemicals, methods are needed to produce realistic exposure estimations.

Methods:

A probabilistic aggregate exposure model was developed to estimate consumer exposure in Europe and North America to a hypothetical broad spectrum biocide, from a range of rinse off personal cleansing products. It incorporates large habits and practices surveys, from industry/cosmetic trade associations, containing data on frequency of use, amount, co-use along with market share, and combines these data at the level of the individual based on subject demographics (gender, age, ethnicity) to realistically calculate exposure. Results: When the antimicrobial was assumed present in five rinse off products (Shampoo: 2% and other products: 0.5%), the average daily applied exposure (amount applied to the skin) was estimated at 1.65 mg/kg/day for the average person and 3.79 mg/kg/day for the 95th percentile consumer. This probabilistic modelling offers significant exposure refinement versus deterministic aggregate summation methods.

Conclusions:

This probabilistic aggregate exposure model provides robust data that can be used in the human safety assessment of multiple rinse-off technologies (e.g., shampoo, bar soap, body wash, liquid hand soap) containing the biocide. In addition, this model may be used in other situations where refined exposure assessment is required to support a chemical risk assessment.

Download the case study >>>

Download now

Tozer Sarah, Cian O’Mahony, Jay Nash, Seamus Kelly, E.J. Daly
Toxicology Letters, Volume 229, Supplement, 10 September 2014, Page S128
10/09/2014

Probabilistic aggregate exposure modelling to aluminium from the diet, cosmetics and medicines

Download the case study >>>

Download now

LaKind Judy S. & Carol J. Burns, Daniel Q. Naiman, Cian O’Mahony, Giulia Vilone, Annette J. Burns & Joshua S. Naiman
Journal of Toxicology and Environmental Health, Part B Critical Reviews Volume 20, 2017 – Issue 8
20/11/2017

Critical and systematic evaluation of data for estimating human exposures to 2,4-dichlorophenoxyacetic acid (2,4-D) – quality and generalizability

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been commercially available since the 1940’s. Despite decades of data on 2,4-D in food, air, soil, and water, as well as in humans, the quality the quality of these data has not been comprehensively evaluated. Using selected elements of the Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument (temporal variability, avoidance of sample contamination, analyte stability, and urinary methods of matrix adjustment), the quality of 156 publications of environmental- and biomonitoring-based 2,4-D data was examined. Few publications documented steps were taken to avoid sample contamination. Similarly, most studies did not demonstrate the stability of the analyte from sample collection to analysis. Less than half of the biomonitoring publications reported both creatinine-adjusted and unadjusted urine concentrations. The scope and detail of data needed to assess temporal variability and sources of 2,4-D varied widely across the reviewed studies. Exposures to short-lived chemicals such as 2,4-D are impacted by numerous and changing external factors including application practices and formulations. At a minimum, greater transparency in reporting of quality control measures is needed. Perhaps the greatest challenge for the exposure community is the ability to reach consensus on how to address problems specific to short-lived chemical exposures in observational epidemiology investigations. More extensive conversations are needed to advance our understanding of human exposures and enable interpretation of these data to catch up to analytical capabilities. The problems defined in this review remain exquisitely difficult to address for chemicals like 2,4-D, with short and variable environmental and physiological half-lives and with exposures impacted by numerous and changing external factors.

Download the case study >>>

Download now

van der Fels-Klerx, H.J. (Ine) & Simon G. Edwards, Marc C. Kennedy, Sue O’Hagan, Cian O’Mahony, Gabriele Scholz, Pablo Steinberg, Alessandro Chiodini
Food and Chemical Toxicology Volume 74, December 2014, Pages 360-371
01/12/2014

A framework to determine the effectiveness of dietary exposure mitigation to chemical contaminants

In order to ensure the food safety, risk managers may implement measures to reduce human exposure to contaminants via food consumption. The evaluation of the effect of a measure is often an overlooked step in risk analysis process. The aim of this study was to develop a systematic approach for determining the effectiveness of mitigation measures to reduce dietary exposure to chemical contaminants. Based on expert opinion, a general framework for evaluation of the effectiveness of measures to reduce human exposure to food contaminants was developed. The general outline was refined by application to three different cases: 1) methyl mercury in fish and fish products, 2) deoxynivalenol in cereal grains, and 3) furan in heated products. It was found that many uncertainties and natural variations exist, which make it difficult to assess the impact of the mitigation measure. Whenever possible, quantitative methods should be used to describe the current variation and uncertainty. Additional data should be collected to cover natural variability and reduce uncertainty. For the time being, it is always better for the risk manager to have access to all available information, including an assessment of uncertainty; however, the proposed methodology provides a conceptual framework for addressing these systematically.

Download the case study >>>

Download now

Tozer S, Kosemund K, Kelly S, O’Mahony C.
Toxicology Letters, Volume 238, Issue 2, Supplement, 16 October 2015, Page S368
16/10/2015

Aggregate exposure to vitamin A from cosmetics and the diet

Realism is important in estimating consumer exposure to a substance, especially when accounting for exposure from multiple sources. Humans are exposed to vitamin A from food, dietary supplements and cosmetics products. A probabilistic aggregate exposure model was developed for estimating exposure distributions to vitamin A (as retinol equivalents) in pre-/post-menopausal, and menopausal women in European and US populations. Data from large dietary surveys were used, together with realistic and extreme case scenarios of cosmetics product use (including occurrence data for vitamin A presence in 17 cosmetic products). Results of absorbed exposure estimates were expressed as μg/kg bw/day by incorporating dermal and oral bioavailability data. The mean and 95th percentile (P95) aggregate exposures were below the EU Tolerable Upper Intake Limit (3000 μg/day; 45 μg/kg/day internal exposure dose (IED)), providing positive assurances of safety. The major source of vitamin A exposure is the diet, with cosmetics providing only a small fraction of total exposure (2-5% at P95). In addition to providing a realistic assessment of total vitamin A exposure, this work provides a case study on how to approach future complex aggregate exposure questions.

Download the case study >>>

Download now

Tennant David & Diána Bánáti, Marc Kennedy, Jürgen König, Cian O’Mahony, Susanne Kettler
Food and Chemical Toxicology, Volume 109, Part 1, November 2017, Pages 68-80
02/08/2017

Assessing and reporting uncertainties in dietary exposure analysis – Part II: Application of the uncertainty template to a practical example of exposure assessment

A previous publication described methods for assessing and reporting uncertainty in dietary exposure assessments. This follow-up publication uses a case study to develop proposals for representing and communicating uncertainty to risk managers. The food ingredient aspartame is used as the case study in a simple deterministic model (the EFSA FAIM template) and with more sophisticated probabilistic exposure assessment software (FACET). Parameter and model uncertainties are identified for each modelling approach and tabulated. The relative importance of each source of uncertainty is then evaluated using a semi-quantitative scale and the results expressed using two different forms of graphical summary. The value of this approach in expressing uncertainties in a manner that is relevant to the exposure assessment and useful to risk managers is then discussed. It was observed that the majority of uncertainties are often associated with data sources rather than the model itself. However, differences in modelling methods can have the greatest impact on uncertainties overall, particularly when the underlying data are the same. It was concluded that improved methods for communicating uncertainties for risk management is the research area where the greatest amount of effort is suggested to be placed in future.

Download the case study >>>

Download now

Aylward Lesa, Giulia Vilone, Christina Cowan-Ellsberry, Jon A. Arnot, John N. Westgate, Cian O’Mahony & Sean M. Hays
Journal of Exposure Science and Environmental Epidemiology 30 (Suppl 4)
05/12/2018

Exposure to selected preservatives in personal care products: case study comparison of exposure models and observational biomonitoring data

Exposure models provide critical information for risk assessment of personal care product ingredients, but there have been limited opportunities to compare exposure model predictions to observational exposure data. Urinary excretion data from a biomonitoring study in eight individuals were used to estimate minimum absorbed doses for triclosan and methyl-, ethyl-, and n-propyl- parabens (TCS, MP, EP, PP). Three screening exposure models (European Commission Scientific Commission on Consumer Safety [SCCS] algorithms, ConsExpo in deterministic mode, and RAIDAR-ICE) and two higher-tier probabilistic models (SHEDS-HT, and Creme Care & Cosmetics) were used to model participant exposures. Average urinary excretion rates of TCS, MP, EP, and PP for participants using products with those ingredients were 16.9, 3.32, 1.9, and 0.91 μg/kg-d, respectively. The SCCS default aggregate and RAIDAR-ICE screening models generally resulted in the highest predictions compared to other models. Approximately 60–90% of the model predictions for most of the models were within a factor of 10 of the observed exposures; ~30–40% of the predictions were within a factor of 3. Estimated exposures from urinary data tended to fall in the upper range of predictions from the probabilistic models. This analysis indicates that currently available exposure models provide estimates that are generally realistic. Uncertainties in preservative product concentrations and dermal absorption parameters as well as degree of metabolism following dermal absorption influence interpretation of the modeled vs. measured exposures. Use of multiple models may help characterize potential exposures more fully than reliance on a single model.

Download the case study >>>

Download now

Oldring P. K. T., C. O’Mahony et al
January 2014 Jct Coatings Tech 11(1):30-40
03/01/2014

FACET: Light metal packaging methodology

Agency Light metal packaging for food stuffs primarily encompasses cans, closures and aerosols. For cans used in the European Union (EU), the majority are beverage cans with about 45 billion used per annum (pa) compared to approximately 20 billion food cans. Metal closures are subdivided into about 20 billion closures for jars and 80 billion crowns for bottles per year. The ILSI Monograph on Light Metal Packaging for Food stuffs ( contains background information for the reader unfamiliar with this type of packaging. The FACET project (Flavours, Additives and food Contact materials Exposure Tool) was a four-year project that was partially funded by the European Commission within its Framework FP7 Programme. The project ran from September 2008 until August 2012. FACET was coordinated by University College Dublin and it involved 20 research partners from across Europe, coming from academia, industry, research centers, and small- to medium-sized enterprises. Hearty et al. provided an early overview of the project plan and Oldring et al.3,4 offered a view of the part of the project plan that dealt specifically with packaging materials. More recently, the use of FACET for assessing exposure to bisphenol A (BPA) from light metal packaging has been reported.5As the name indicates, the FACET expo-sure tool provides a single platform with the functionality to estimate consumer exposure to three types of food chemicals, namely chemical food additives(“E-numbers”), chemically defined flavor-ing substances added to foods, and sub-stances used to make food contact materials. A PC-based desktop application, the FACET exposure tool is publicly avail-able and free of charge. The software tool was developed and populated with data gathered throughout the course of the project, with the facility of uploading any additional data that the end-user might have. This article describes how the information was gathered for the light metal packaging portion of the FACET tool.

Download the case study >>>

Download now

W.den Besten Heidy M., Alejandro Amézquita, Sara Bover-Cid, Stéphane Dagnas, Mariem Ellouze, Sandrine Guillou, George Nychas, Cian O’Mahony, Fernando Pérez-Rodriguez, Jeanne-Marie Membré
International Journal of Food Microbiology Volume 287, 20 December 2018, Pages 18-27
20/12/2018

Next generation of microbiological risk assessment: Potential of omics data for exposure assessment

In food safety and public health risk evaluations, microbiological exposure assessment plays a central role as it provides an estimation of both the likelihood and the level of the microbial hazard in a specified consumer portion of food and takes microbial behaviour into account. While until now mostly phenotypic data have been used in exposure assessment, mechanistic cellular information, obtained using omics techniques, will enable the fine tuning of exposure assessments to move towards the next generation of microbiological risk assessment. In particular, metagenomics can help in characterizing the food and factory environment microbiota (endogenous microbiota and potentially pathogens) and the changes over time under the environmental conditions associated with processing, preservation and storage. The difficulty lies in moving up to a quantitative exposure assessment, because the development of models that enable the prediction of dynamics of pathogens in a complex food ecosystem is still in its infancy in the food safety domain. In addition, collecting and storing the environmental data (metadata) required to inform the models has not yet been organised at a large scale. In contrast, progress in biomarker identification and characterization has already opened the possibility of making qualitative or even quantitative connection between process and formulation conditions and microbial responses at the strain level. In term of modelling approaches, without changing radically the usual model structure, changes in model inputs are expected: instead of (or as well as) building models upon phenotypic characteristics such as for example minimal temperature where growth is expected, exposure assessment models could use biomarker response intensity as inputs. These new generations of strain-level models will bring an added value in predicting the variability in pathogen behaviour. Altogether, these insights based upon omics techniques will increase our (quantitative) knowledge on pathogenic strains and consequently will reduce our uncertainty; the exposure assessment of a specific combination of pathogen and food will be then more accurate. This progress will benefit the whole community of safety assessors and research scientists from academia, regulatory agencies and industry.

Download the case study >>>

Download now